Welcome to

tetrasilver1.com





Tetrasilver tetroxide
( TSTO )


An Order of Magnitude more Potent vs Pathogens than any other forms of Silver




***   DATA  SHEET   ***    PATENTS   ***   PREPARATION   *** 

***    OXONE  
***   TETRACOPPER TETROXIDE   ***

***  Buy TSTO  ***



TETRASILVER TETROXIDE
Ag ( I, III ) Oxide

Data Sheet

Description

Trade Name : Silver ( II ) Oxide
Product Names : Tetrasil, Sildate, etc.
Chemical Abstract Service ( CAS ) Number : 1301-96-8
EPA Chemical Code : 129097
EPA Registration Number : 3432-64
Chemical Family : metal Oxide
Molar weight : 123.87
Density : 7.48

Odor : odorless
Melting Point : 100 C. ( decomposes )
Solubility : practically insoluble
--  0.025 gr./100 mL.
Dissociation Constant : Ka = 7.9 x 10^-13
Stability : store below 100 C ( decomposition )
Oxidizer/Reducer Action : strong oxidizer
Non-Flammable
Corrosion Characteristics : corrosive to metals

Names : Silver(ll)Oxide // Silver(l,lll)Oxide // Argentic Oxide // Tetrasil // Sildate // Divasil // Silver Peroxide // Silver suboxide // Divalient Silver Oxide // Mono Trivalient Silver oxide // Tetrasilver Tetroxide
Can be shipped US Postal Service 1 oz. or less with no hazard packaging in dark glass containers suitably protected from breakage.

NOT to be confused with :

Ag2O // Silver(l)Oxide // Silver Monoxide // Silver rust // Argentic Oxide // Argentious Oxide
Molar weight :  231.74
Density 7.14
Melting point 280 C
Photo sensitive
CAS Registry Number : 20667-12-3
Water soluble  :  0 .00027 g/100 mL
Molecular weight : 495.52
Dissociation Constant KA 7.9 x 10-13
Both forms of silver oxide are strong oxidants and will ignite upon contact with sulfur, red phosphorous, sulfides of antimony and arsenic, and will ignite inflammable substances.
Reacts explosively with Ammonia and Hydrogen Peroxide, forming silver powder and oxygen ( YouTube : http://www.youtube.com/watch?v=Vt4hrnY9h2I& feature=player_embedded )

Toxicology Characteristics

Results of acute dermal toxicity study for this product ( 2% Active Ingredient ) indicates Toxicity Category III (CAUTION ). Additional toxicological studies supporting this registration indicate Toxicity Category IV. Adverse effects to human health are not anticipated from the use of this product.

Ecological effects data indicate the product is practically non-toxic to avian species and highly toxic to aquatic species.

Environmental fate data indicate that the compound does not hydrolyze.

Use Patterns & Formulations

A disinfectant for use in swimming pool water

Types & Methods of Applications : For direct addition to swimming pool water followed by addition of a potassium persulfate activator compound ( Oxone )
Application Rates : 1 ppm ( 1 oz / 10,000 gallons water )

A 3% concentrate was used and evaluated by a certified laboratory employing good laboratory practice (GLP) according to the Code of Federal Regulations for this purpose. The results were as follows:

Acute Oral Toxicity : LD.sub.50 Greater than 5,000 mg/Kg
Acute Dermal Toxicity
: LD.sub.50 Greater than 2,000 mg/Kg
Primary Eye Irritation
: Mildly irritating
Primary Skin Irritation : No irritation
Skin Sensitization
  : Non-Sensitizing

USP 5211855 --




www.marantec.com
[ defunct ]

Technical Description of "Electron Jumping Compounds" (EJC)

 * Covalent bonding with the target

* Release of electrical energy (nano-electrocution) through a reduction/oxidation process


* Release of highly active singlet oxygen.
This action effectively ensures the target’s death. No other drug or anti-microbial functions in this way. The unique method of action of the Company’s compounds has the potential to establish a new class of medicine.

Beyond Antibiotics, Non Toxic Disinfectants and Tetrasil

In this paper, it was reported that the effects of the electron transfer involved with respect to the tetroxide, rendered it a more powerful germicide than other silver entities. The instant inventor holds patents for multivalent silver antimicrobials, e.g., U.S. Pat. No. 5,017,295 for Ag(II) and U.S. Pat. No. 5,223,149 for Ag (III); and while these entities are stronger antimicrobials than Ag (I) compounds, they pale by comparison to the tetroxide and so does colloidal silver that derives its germicidal properties from trace silver (I) ions it generates in various environments. Accordingly, the oligodynamic properties of these entities may be summarized as follows, which is referred to as the Horsfal series:

Ag4O4 > Ag(III) > Ag(II) >>>> Ag(I)

The other unique property of the tetroxide was that it did not stain organic matter such as skin in like manner as Ag(I) compounds do. In addition, it was light stable.

If we are to consider one molecular device in operation, then each molecule would release two electrons having each a charge of 4.8 x 10-10 e.s.u. equivalent to approximately 1.6 x 10-19 coulombs. The EMF given in my Encyclopedia of Chemical Electrode Potentials (Plenum 1982), page 88, for the oxidation of Ag(I) to Ag(II) is 1.98 volts which approximates 2.0 V. The total power output per device can be calculated in watts by multiplying the power output for each electron by 2. Since power is the product of the potential times the charge, P = EI; for each electron it would be

2.0 x 1.6 x 10^-19 = 3.2 x 10^-19 watts

From this, and using Avogadro's number, we can calculate that the power flux of one liter of solution containing 0.5 PPM of devices would be 0.064 watts.
Since the electronic charges of the devices are directly proportional to the number of devices in solution, i.e., the concentration of the oxide in the solution, we can arbitrarily assign our own device power flux constant which can be used to gauge the concentrations of the devices required in order to kill particular organisms in specific environments. I have found the following formula useful for this purpose:

Power Flux = EMF generated per molecule x Concentration x 5 (the EMF being 4.0 volts per molecular device; and the concentration is in PPM).
Utilizing this formula, the power flux to effectuate 100% kills for the following organisms is given in Table I which follows.

                  TABLE I
    ______________________________________
    Organism Name      Power Flux
    ______________________________________
    Escherichia coli   50.0
    Staphylococcus aureus
     50.0
    Streptococcus faecalis
     50.0
    Streptococcus pyogenes
     50.0
    Candida albicans   50.0
    Pseudomonas aeruginosa
25.0
    Micrococcus luteus 25.0
    Staphylococcus epidermidis
12.5

When the tetroxide crystals are utilized to destroy pathogens, they will not do so unless activated by an oxidizing agent. This is analogous to the behavior of single semiconducting photovoltaic molecular devices such as copper indium selenide whose surfaces must be "etched" in order to activate the photovoltaic activity, i.e., for light to facilitate the release of electrons from the molecule. The tetroxide was activated by persulfates [ or: hydrogen peroxide ]. It was found that when the persulfates were tested as a control by themselves, they failed to exhibit any unilateral antipathogenic activity at the optimum level selected of 10 PPM. The persulfates evaluated varied from OXONE (Registered Trademark Du Pont Company) brand potassium monopersulfate to alkali peroxydisulfates.

The oxidizing agent to activate the crystals for water supplies would be OXONE (Registered Trademark Du Pont Company) or hydrogen peroxide.







PATENTS

USP Appln 20080233161
DEPOSITION PRODUCTS, COMPOSITE MATERIALS AND PROCESSES FOR THE PRODUCTION THEREOF

BACKGROUND ART

The germicidal properties of silver, even not known as such, have been utilized since the early Mediterranean cultures. It has been known since 1000 BC and possibly before that water kept in silver vessels and then exposed to light and filtered could be rendered potable. Other forms of silver have been used throughout centuries for various applications, such as coatings for prevention of beverages from spoilage or silver plates and foils in the surgical treatments of wounds and broken bones.

The lethal effects of metals towards bacteria and lower life forms were first scientifically described by von Nageli in the late nineteenth century, and this phenomenon has been defined as an "oligodynamic effect" (N. R. Thompson, Silver, in Comprehensive Inorganic Chemistry, Vol. III D, J. C. Bailer, H. J. Emeleus, R. Nyholm and A. F. Trutman-Dickenson, Editors, Pergamon Press, Oxford (1973)). The term oligodynamic effect is typically restricted to describing solutions in which the metal concentration is several orders of magnitude lower than that which would be lethal to higher organisms.

The investigation of the bacteriostatic properties of pure metals such as Fe, Mo, Cu, V, Sn, W, Au, Al, Ta, Nb, Ti, Zr, Ni, Co, Ag and Cr, has proved that Co was the only element which was inhibitory for the bacterial growth under anaerobic conditions (K. J. Bundy, M. F. Butler and R. F. Hochman, "An Investigation of the Bacteriostatic Properties of Pure Metals", Journal of Biomedical Materials Research, Vol. 14 (1980) 653-663). Under aerobic conditions both Cu and Co consistently display inhibitory effects. Some antimicrobial effects have been seen for Ni, Fe and V. However, other metals such as Mo, W, Al, Nb, Zr, Cr and most importantly for the present invention Ag and Sn never showed any tendency to inhibit the growth of Streptococcus mutans.

In the case of silver metal, it was in 1920, when Acel who was the first to attribute the antimicrobial properties of silver to the liberation of Ag.sup.+ ions from the material (D. Acel, "Uber die oligodynamische Wirkung der Metalle", Z. Biochem., 112 (1920) 23).

Gibbard reported in 1937 that pure metallic silver has no antimicrobial activity (J. Gibbard, "Public Health Aspects of the Treatment of Water and Beverages with Silver", Journal of American Public Health, Vol. 27 (1937) 112-119). His experiments showed that if silver is cleaned mechanically with an abrasive cloth or paper it becomes inactive. Similarly, if molten silver is allowed to cool in a reduction atmosphere (e.g. hydrogen), no antimicrobial activity is found. When cooling of molten silver is carried out in air, and formation of surface oxide occurred, an antimicrobial activity may be observed. Similar results were found when silver metal was treated with nitric acid in an air atmosphere (dissolution and formation of an oxide layer). Based on Gibbard's results, pure silver was devoid of activity, but surface oxidized silver was active. Silver oxide, silver nitrate and silver chloride were always active. Also, Gibbard observed that the antimicrobial properties of silver and its compounds were reduced in the presence of proteins or glucose.

Djokie investigated the behavior of silver films, e.g. physical vapor deposited, electrodeposited, electroless deposited and metallurgical in physiological saline solutions (S. S. Djokie and R. E. Burrell, "Behavior of Silver in Physiological Solutions", Journal of the Electrochemical Society, Vol. 145 (5) (1998) 1426-1430). Djokie found that an essential factor leading to an antimicrobial activity of metallic silver is a presence of Ag oxide(s) at the surface of this material. It was demonstrated that only silver films containing silver oxides (most likely Ag.sub.2O) showed an antimicrobial activity. The behavior was attributed to the dissolution of Ag.sub.2O from the "silver" material and formation of Ag.sup.+ or other complexed ions which become antimicrobially active. There was no evidence that pure metallic silver, no matter which way it was produced i.e., physical vapor deposited, electrodeposited or electroless deposited could be dissolved in physiological media, or that these materials would exhibit antimicrobial activity.

It should be noted that when the physical vapor deposition of silver was carried out in an atmosphere containing oxygen the resulted product, as found by the XRD analysis contained silver oxide. Consequently, these samples exhibited antimicrobial activity. Conversely, when the physical vapor deposition was carried out from an argon atmosphere (no presence of oxygen) pure metallic, nanocrystalline silver film was deposited as confirmed by the XRD analysis. However, these films did not dissolve in physiological saline solutions, nor they exhibited antimicrobial activity at all.

For an in depth understanding of structural properties of silver films produced by reactive sputtering, see Djokie et al. (S. S. Djokie, R. E. Burrell, N. Le and D. J. Field, "An Electrochemical Analysis of Thin Silver Produced by Reactive Sputtering", Journal of the Electrochemical Society, Vol. 148 (3) (2001) C191-C196.). To prove the concept that only oxidized silver species are responsible for the antimicrobial activity, Djokie further oxidized pure metallic silver samples (i.e. those produced by the electrodeposition, electroless deposition, physical vapor deposition in an argon atmosphere or metallurgically). The oxidation of these samples was carried out electrochemically in 1 M KOH solutions, using a process very well established in the art. The electrochemically oxidized silver samples were tested for the antimicrobial activity against Pseudomonas Aeruginosa. Clear evidence was found that the electrochemically oxidized silver samples exhibited antimicrobial activity.

The above referenced work shows that only oxidized silver species, but not elemental silver will affect antimicrobial activity. The findings to date show that the "nanocrystalline" or "macrocrystalline" elemental silver does not have antimicrobial activity at all. Elemental silver, either nanocrystalline or "macrocrystalline" may exhibit some antimicrobial activity only if oxidized silver species are present at these surfaces or within the silver metal. Only the formation of silver oxide(s), carbonates or other silver salts (except silver sulfide, due to its extremely low solubility) at the surface or within the material, which may be influenced by an exposure of elemental silver to various bases, acids or due to atmospheric corrosion may lead to an antimicrobial activity of this material.

The use of silver on chronic wounds dates back in the 17.sup.th and 18.sup.th centuries. In the early 19.sup.th century, silver nitrate began to be used on burns and in opthalmology. Concentrations of the solution ranged from 0.20 to 2.5 wt. % with the weaker solutions being reserved for children. Silver has been found to be active against a wide range of bacterial, fungal and viral pathogens. Topical treatment of acute and chronic wounds is a preferred and selective approach to the prevention of infection and healing. In order to achieve these requirements products that are used in the prevention of infections must have certain physical and chemical properties.

When used for topical dressings, silver compounds must have relatively low solubility. This is usually achieved by choosing compounds with a relatively low solubility products (e.g. AgCl, Ag.sub.2SO.sub.4, Ag.sub.2CO.sub.3, Ag.sub.3PO.sub.4, Ag-oxides). Kinetics of dissolution of these compounds in neutral aqueous solutions is quite slow. This property is very convenient for two reasons. First, a sustained release of silver ions from the silver compounds is more likely to provide a prolonged antimicrobial activity. Second, low amounts of the silver ions released into wound exudates may not give rise to transient high tissue blood and urine levels, thus avoiding systemic toxicity. The choice of a particular silver compound will depend upon its reactivity with wound exudates. This reactivity should preferably be minimized in order to achieve the desired effect of the released silver ions (i.e., antimicrobial activity without systemic toxicity).

Besides silver nitrate, one of the most widely used topical antimicrobial materials is silver sulfadiazine (C. L. Fox, "Topical Therapy and the development of Silver Sulfadiazine", Surgery, Gynecology & Obstetrics, 157 (1) (1983) 82-88). This compound is synthesized from silver nitrate and sodium sulfadiazine. Silver sulfadiazine has been used in treatments of burns, leg ulcers and also as a topical antimicrobial agent in the management of infected wounds.

Products such as silver protein (argyrols) or mild silver protein are mixtures of silver nitrate, sodium hydroxide and gelatin. These products are recommended for internal use and are promoted as essential mineral supplements. Although there is no theoretical or practical justification for their use, this class of compounds has been recommended for the treatment of diverse diseases such as cancer, diabetes, AIDS and herpes (M. C. Fung, D. L. Bowen, "Silver Products for Medical Indications: Risk--Benefit Assessment", Clinical Toxicology, Vol. 34 (1) (1996) 119-126).

Silver-zinc-allantoinate has been formulated as a cream and represents a combination of silver, zinc and allantoin (an agent that stimulates debridement and tissue growth (H. W. Margaf, T. H. Covey, "A Trial of Silver-Zinc-Allantoinate in the Treatment of Leg Ulcers", Arch. Surg., Vol. 112 (1977) 699-704). This composition exhibited promising effects in preliminary studies.

In the past few decades several topical dressings containing silver have been developed for wound care. Such materials include Arglaes.TM., Silverlon.TM., Acticoat.TM., Actisorb.TM., and Silver 220.TM..

Antimicrobial coatings and methods of forming same are the subject of U.S. Pat. No. 5,681,575 (Burrell et al) and U.S. Pat. No. 6,238,686 (Burrell et al). The coatings are formed by the physical vapour deposition of biocompatible metal and the preferred biocompatible metal is silver.

U.S. Pat. No. 6,087,549 (Flick) discloses a multilayer laminate wound dressing comprising a plurality of layers of a fibrous material, with each layer comprising a unique ratio of metalized fibers to nonmetalized fibers. In a preferred embodiment the wound dressing consists of three layers and the metal is silver. The wound contact layer has the highest ratio of metalized fibers to nonmetalized fibers, the intermediate layer has a lower ratio of metalized fibers to nonmetalized fibers, and the outer layer has the lowest ratio of metalized fibers to nonmetalized fibers. The wound dressing described by Flick is commercially available under the trade-mark Silverlon.TM..

U.S. Pat. No. 5,211,855 (Antelman), U.S. Pat. No. 5,676,977 (Antelman) and U.S. Pat. No. 6,436,420 (Antelman) teach that tetrasilver tetroxide (Ag.sub.4O.sub.4) containing two monovalent and two trivalent silver ions exhibits bactericidal, fungicidal and algicidal properties. As a result, "tetrasilver tetroxide" is suggested for use for water treatment in U.S. Pat. No. 5,211,855 and for use in destroying the AIDS virus in U.S. Pat. No. 5,676,977.

In U.S. Pat. No. 6,436,420, Antelman describes a method of deposition or interstitial precipitation of tetrasilver tetroxide (Ag.sub.4O.sub.4) crystals within the interstices of fibers, yarns and/or fabrics forming such articles in order to produce fibrous textile articles possessing enhanced antimicrobial properties. The interstitial precipitation of Ag.sub.4O.sub.4 is achieved by immersion of the article to be treated (e.g., fiber, yarn or fabric) in an aqueous solution containing a water soluble silver salt, most preferably silver nitrate. After uniformly wetting the article, the article is removed into a second heated aqueous solution (having a temperature of at least 85 degrees Celsius or more preferably at least 90 degrees Celsius) containing strong alkali (most preferably NaOH) and a water soluble oxidizing agent (most preferably potassium persulfate) for 30 seconds to 5 minutes to facilitate the precipitation of tetrasilver tetroxide.

After the reaction is completed, the article is removed and washed. The article treated in this way is described as exhibiting outstanding antimicrobial resistance towards pathogens such as bacteria, viruses, yeast and algae. The article is also described as being resistant to ultraviolet light and as maintaining its antimicrobial properties after a number of launderings.



WO/2001/077030
OZONATED SOLUTIONS OF TETRASILVER TETROXIDE

...it appears that in addition to acting as a killing agent in its own right, ozone is surprisingly able to activate the antimicrobial activity of tetrasilver tetroxide, thus yielding a synergistic killing effect exceeding the individual killing effects of either non-activated tetrasilver tetroxide or ozone.

Example 5: Ozone Stability Testing 6.1 mg/L (6.1 ppm) of ozone was provided in deionized, distilled water over a 15 minute period. The solution was allowed to stand with stirring by a magnetic stirrer over a 24-hour period, taking periodic readings of the ozone concentration. By 2 hours, the ozone concentration was 3 ppm and progressively dropped to 0.01 ppm by 18 hours. This represented a half-life of approximately 2 hours. When 2 ppm tetrasilver tetroxide was added, the rate of decay was unexpectedly lengthened, such that 0.12 ppm of ozone was present after 18 hours (approximately an order of magnitude higher than would have been expected in the absence of tetrasilver tetroxide) and by 24 hours, 0.03 ppm of ozone oxidizing activity was still present.

Further research showed that neither tetrasilver tetroxide alone nor chemically-activated tetrasilver tetroxide (i. e., activated with potassium monopersulfate as described in the Comparative Examples) gave measurable oxidation as measured by the indigo dye method. Thus, the reduced half-life of ozone in the presence of tetrasilver tetroxide does not appear to be merely an additive effect or an experimental flaw arising from the use of the indigo dye method, but rather appears to be a surprising synergistic effect.



US Patent 5,336,499
Molecular Crystal Device for Pharmaceuticals

Abstract ~ A novel molecular scale device is described which is bactericidal, fungicidal, viricidal and algicidal. The anti-pathogenic properties of the device are attributed to electron activity indigenous to diamagnetic semiconducting crystals of tetrasilver tetroxide ( Ag4O4 ) which contains two monovalent and two trivalent silver ions in each molecular crystal. When the crystals are activated with an oxidizing agent, they release electrons equivalent to 6.4 x 10-19 watts per molecule which in effect electrocute pathogens. A multitude of these devices are effective at such low concentrations as 0.3 PPM used as preservatives in a variety of formulations ranging from cosmetics to pharmaceuticals. Indeed, they are intended as active ingredients for pharmaceuticals formulated to destroy such pathogens as Staphylococcus aureus, and epidermidis, the latter of which it completely destroys in a nutrient broth culture of about 1 million organisms at 0.6 PPM, or Candida albercans, the vaginal yeast infection at 2.5 PPM, and the AIDS virus at 18 PPM.

The electron transfer can be depicted by the following half reactions in which the monovalent silver ion loses an electron and the trivalent silver gains one as follows:

Ag+ -e = Ag+2

Ag+3 +e = Ag+2

The molecular crystal then will become stabilized with each silver ion having a divalent charge.

Stringent testing was performed in which cultures were actually placed in trypticase soy nutrient broth, which allowed the pathogens being tested to replicate without being detached from its own food supply. Under these conditions the devices were able to kill two strains of E. Coli at 2.5 PPM; Micrococcus Luteus at 1.25 PPM; Staphylococcus aureus at 2.5 PPM; Staphylococcus epidermidis at 0.6 PPM; Pseudomonas aeruginosa at 1.25 PPM; and Streptococcus pyogenes at 2.5 PPM.

The devices were then evaluated in analogous nutrient used for yeasts, algae and molds utilizing Sabouraud dextrose broth. The infectious yeast pathogen Candida ALBICANS was totally killed at 2.5 PPM and that of the Saccharomycetpideae variety at 1.25 PPM.

If we are to consider one molecular device in operation, then each molecule would release two electrons having each a charge of 4.8 x 10-10 e.s.u. equivalent to approximately 1.6 x 10-19 coulombs. The EMF given in my Encyclopedia of Chemical Electrode Potentials (Plenum 1982), page 88, for the oxidation of Ag(I) to Ag(II) is 1.98 volts which approximates 2.0 V. The total power output per device can be calculated in watts by multiplying the power output for each electron by 2. Since power is the product of the potential times the charge, P = EI; for each electron it would be

2.0 x 1.6 x 10^-19 = 3.2 x 10^-19 watts ...



US Patent 5,223,149
Trivalent Silver Water Treatment Compositions

Said trivalent silver complexes were subsequently evaluated as to their efficacy in killing gram positive and gram negative bacteria in algae in accordance with the EPA protocols for swimming pools, which require 100% kills of bacteria within ten minutes. The compounds far exceeded the bacteria requirements at concentrations of one PPM or less of silver. They were evaluated with and without persulfate salts at 10 PPM and were effective without persulfates as bactericides.

The complexes, which were colored from deep orange to brown and maroon, were left exposed in clear glass bottles for three months with constant exposure to daylight. The complexes were stable and did not decompose to silver.

Ag(III) complexes were applied to human skin in concentrated form containing as much as 5,000 PPM silver without any silver staining of the skin whatsoever.



US Patent 5,211,855
Method of Treating Water Employing Tetrasilver Tetroxide Crystals

Abstract ~ A novel molecular scale device is described which is bactericidal, fungicidal and algicidal. The antipathogenic properties of the device are attributed to electron activity indigenous to diamagnetic semiconducting crystals of tetrasilver tetroxide (Ag4O4) which contains two monovalent and two trivalent silver ions in each molecular crystal. When the crystals are activated with an oxidizing agent, they release electrons equivalent to 6.4 x 10-19 watts per molecule which in effect electrocute pathogens. A multitude of these devices are effective at such low concentrations as 0.3 PPM where they can kill 100% of 100 K/cc Streptococcus faecalis, and E. coli colonies in three minutes meeting the ten-minute EPA criteria of 100% kills within ten minutes for swimming pool and hot-tub applications. The devices can be used in utilitarian bodies of water, such as municipal and industrial water reservoirs.

While the formula AgO accurately designates the silver:oxygen ratio, the molecular weight of the compound is actually 495.52. Further elucidation of the molecule's electromagnetic properties revealed that it is a diamagnetic semiconductor. The structure is electronically active because of the trivalent sp2 electron configuration disparity of the electrons within the crystal. The oxide as presented in my patent was actually capable of killing 100% of standardized E. coli and Strep. faecalis colonies in less than five minutes at concentratiors of 0.5 PPM. My independent evaluations of this oxide in areas unrelated to water treatment resulted in the "molecular device" concept which was substantiated by submission of the oxide for testing with a preferred embodiment of the invention (10 PPM of sodium persulfate) at an Environmental Protection Agency (EPA) certified laboratory which revealed that 0.5 PPM of oxide only yielded 0.003 PPM of silver in solution, a silver concentration entirely too low to cause this level of bactericidal activity. Indeed, the killing of the bacteria was analogous to that obtained by electron generating devices utilized in swimming pools or water towers for killing bacteria. It was therefore postulated that the oxide efficacy at low concentrations could only be attributed to regarding each oxide molecule as a device. Further testing was continued on algae and viruses. The accumulated data of efficacy at low concentrations, coupled together with a reinterpretation of silver oxide efficacy, has led to the final development of this invention, namely, a molecular device for killing algae, bacteria and viruses in utilitarian water bodies, such as swimming pools.

This invention relates to a molecular scale device capable of destroying gram positive and gram negative bacteria as well as viruses and algae. Said molecular scale device consists of a single crystal of tetrasilver tetroxide. Several hundred thousand trillion of these devices may be employed in concert for their bactericidal, viricidal, and algicidal properties and applied to industrial cooling towers, swimming pools, hot tubs, and municipal water supplies.

The molecular crystals which are the subject of this invention are commercially available and can be prepared by reacting silver nitrate with sodium or potassium peroxydisulfate according to the following equation:

4AgNO3 + 2Na2 S2 O8 + 8NaOH = Ag4O4 + 4Na2SO4 + 4NaNO3 + 4H2O

The oxide lattice represented by the formula Ag4O4 is depicted in the Drawing FIG. 1. It is a semiconducting electron active diamagnetic crystal containing two monovalent and two trivalent silver ions in combination with four oxygen atoms. The distance between the Ag(III)-O Ag(I)O units equals 2.1 A. Ag(III)-Ag(III) = Ag(I)-Ag(I) = 3.28A and Ag(I)-Ag(III) = 3.19 A. Each trivalent silver ion is coordinated via dsp2 electron bonds to 4 oxygen atoms. The depiction of this lattice is based on several literature references relating to crystallographic studies. Exemplary of this literature are J. A. McMillan's studies appearing in Inorganic Chemistry 13,28 (1960); Nature vol. 195 No. 4841 (1962), and Chemical Reviews 1962, 62,65. Alvin J. Salkind elucidated studies involving neutron diffraction with his coworkers (J. Ricerca Sci. 30, 1034 1960) proving the Ag(III)/Ag(I) nature of this molecule and states in his classic entitled Alkaline Storage Batteries (Wiley 1969), coauthored with S. Uno Falk, that the formula is depicted by Ag4O4  (page 156).

That same year a scientific communication appeared in Inorganic Nuclear Chemistry Letters (5,337) authored by J. Servian and H. Buenafama which maintained that their neutron diffraction studies also confirmed the tetroxide lattice and the presence cf Ag(III) and Ag(I) bonds in the lattice, a conclusion also reported previously by Naray-Szahn and Argay as a result of their x-ray diffraction studies (Acta Cryst. 1965, 19,180). Thus the effects of this invention can be explained in terms of these structural elucidations, namely, that the single molecular semiconductor crystal which inevitably must be electronically active exchanging two electrons per crystals between its mono and trivalent bonds is in reality a device which kills pathogens in the same manner as electrically active large-scale devices utilized in water supplies.

When the tetroxide crystals are utilized to destroy pathogens, they will not do so unless activated by an oxidizing agent. This is analogous to the behavior of single semiconducting photovoltaic molecular devices such as copper indium selenide whose surfaces must be "etched" in order to activate the photovoltaic activity, i.e., for light to facilitate the release of electrons from the molecule. The tetroxide was activated by persulfates [ or: hydrogen peroxide ]. It was found that when the persulfates were tested as a control by themselves, they failed to exhibit any unilateral antipathogenic activity at the optimum level selected of 10 PPM. The persulfates evaluated varied from OXONE (Registered Trademark Du Pont Company) brand potassium monopersulfate to alkali peroxydisulfates.

EXAMPLE 1

Tetrasilver tetroxide (Ag4O4 ) crystals were prepared by modifying the procedure described by Hammer and Kleinberg in Inorganic Syntheses (IV,12).

A stock solution was prepared by dissolving 24.0 grams of potassium peroxydisulfate in distilled water and subsequently adding to this 24.0 of sodium hydroxide and then diluting the entire solution with said water to a final volume of 500 ml. Into 20 ml. vials were weighed aliquots of silver nitrate containing 1.0 g. of silver. Now 50 ml. of the aforementioned stock solution were heated in a 100 ml. beaker, and the contents of one of the vials was added to the solution upon attaining a temperature of 85.degree. C. The beaker was then maintained at 90.degree. C. for 15 minutes. The resulting deep black oxide obtained consisting of molecular crystal devices was washed and decanted four times with distilled water in order to remove impurities.

The purified material was collected for further evaluation and comparison with commercial material.

The commercial material was purchased from Johnson Matthey's Catalog Chemicals Division of the Aesar Group of Ward Hill, Massachusetts, under product code 11607 and generically listed in its materials Safety Data Sheet as both silver peroxide and silver suboxide, having a purity of 99.9%.

Both the prepared and commercial device crystals were submitted for bactericidal evaluation following "good laboratory practice" regulations as set forth in Federal Regulations (FIFRA and ffdca/40 CFR 160, May 2, 1984). The protocols consisted of exposures to Streptococcus faecalis, a gram positive pathogenic bacillus utilizing AOAC (15th) 1990:965:13: at colony densities of 100 000 colonies/cc. and two exposure times of five and ten minutes. The devices were tested at concentrations of 0.3, 0.5 and 1.0 PPM in distilled water adjusted to pH = 7.5 and containing Oxone (Registered Trademark Du Pont Company), which is potassium monopersulfate at a level of 10 PPM. The evaluations were repeated at the same persulfate concentration utilizing commercial grade sodium persulfate manufactured by FMC. 100% kills were actually obtained after three minutes at all the aforementioned device concentrations, there being actually zero colonies at the 0.5 and 1.0 PPM levels after five minutes and at the 0.3 PPM level after ten minutes. Analogous testing employing the same colony density of the gram negative bacillus E. coli were carried out. The same results were obtained. EPA criteria require that 100% kills be obtained within ten minutes for a substance to meet EPA criteria for swimming pool utilizatior. In this case, the devices at 0.3 PPM, equivalent to approximately 360,000 trillion devices, were able to far exceed EPA criteria for sanitizing a swimming pool.



US Patent 6,485,755
Methods of Using Electron Active Compounds for Managing Cancer

The instant inventor also presented a discussion of such results and concepts at a Seminar entitled "Incurable Diseases Update" (Weizmann Institute of Science, Rehovot, Israel, Feb. 11, 1998). The title of this presentation was "Beyond Antibiotics, Non Toxic Disinfectants and Tetrasil.TM. (Trademark of applicant for the tetroxide)."

In this paper, it was reported that the effects of the electron transfer involved with respect to the tetroxide, rendered it a more powerful germicide than other silver entities. The instant inventor holds patents for multivalent silver antimicrobials, e.g., U.S. Pat. No. 5,017,295 for Ag(II) and U.S. Pat. No. 5,223,149 for Ag (III); and while these entities are stronger antimicrobials than Ag (I) compounds, they pale by comparison to the tetroxide and so does colloidal silver that derives its germicidal properties from trace silver (I) ions it generates in various environments. Accordingly, the oligodynamic properties of these entities may be summarized as follows, which is referred to as the Horsfal series:

Ag4O4 > Ag(III) > Ag(II) >>>> Ag(I)

The other unique property of the tetroxide was that it did not stain organic matter such as skin in like manner as Ag(I) compounds do. In addition, it was light stable.

Preferably, the administration provides an amount of the metal oxide sufficient to provide about 1 to about 75 ppm of the metal oxide compound or derivative thereof in the bloodstream. The metal oxide is preferably administered via infusion over a period of time sufficient to inhibit adverse side effects, such as over a time period of from about 30 minutes to about 300 minutes.

The method of the invention is preferably suitable for cancers or dysplastic proliferations including at least one of colon cancer, lung cancer, throat cancer, breast cancer, kidney cancer, pancreatic cancer, bladder cancer, prostate cancer, uterine cancer, brain cancer, liver cancer, skin cancer, testicular cancer, stomach cancer, adrenal gland cancer, cancer of the ovaries, thyroid cancer, bronchial cancer, tracheal cancer, eye cancer, bone cancer, cervical cancer, oral cavity cancer, soft tissue cancer, pituitary gland cancer, myeloma, rectal cancer, esophageal cancer, leukemia, lymphoma, cancerous fibroid tumors, non-cancerous fibroid tumors, or liver cancer. The method is preferably suitable for cancers including skin cancer that has metastasized.

A 3% concentrate was used and evaluated by a certified laboratory employing good laboratory practice (GLP) according to the Code of Federal Regulations for this purpose.

The results were as follows:

Acute Oral Toxicity -- LD.sub.50 Greater than 5,000 mg/Kg
Acute Dermal Toxicity -- LD.sub.50 Greater than 2,000 mg/Kg
Primary Eye Irritation -- Mildly irritating
Primary Skin Irritation -- No irritation
Skin Sensitization -- Non-Sensitizing



US Patent 5,676,977

Method of Curing AIDS with Tetrasilver Tetroxide Molecular Crystal Devices

US Patent 5,571,520
Molecular Crystal Redox Device for Pharmaceuticals

US Patent 6,258,385
Tetrasilver Tetroxide Treatment for Skin Conditions

US Patent 6,228,491
High Performance Silver ( I, III ) Oxide Antimicrobial Textile Articles

US Patent 6,436,420
High Performance Silver ( I, III ) Oxide Antimicrobial Textile Articles

USPA 2004022868
Compositions Using Tetrasilver Tetroxide and Methods for Management of Skin Conditions Using Same

USPA 2006105057
Compositions Using Tetrasilver Tetroxide and Methods for Management of Skin Conditions Using Same

Australia 2002346065
Methods of Using Electron Active Compounds for Managing Conditions Afflicting Mammals

WO 01/49115

High Performance Silver ( I, III ) Oxide& Cobalt ( II,III ) Antimicrobial Textile Articles

WO 03/043537
Improvement in Curing AIDS with Tetrasilver Tetroxide Molecular Crystal Devices

US Patent 5,098,582
Divalent Silver Oxide Bactericides

US Patent 5,089,275
Stabilized Divalent Silver Bactericides

US Patent 5,078,902
Divalent Silver Halide Bactericide

US Patent 5,073,382
Divalent Silver Alkaline Bactericide Compositions

US Patent 5017295
Divalent Silver Bactericide for Water Treatment

US Patent 5336416
Trivalent Copper Water Treatment Compositions



PREPARATION

Inorganic Syntheses IV: 12 (Chapter 1B, # 3)

Silver (II) Oxide

by

Robert Hammer & Jacob Kleiberg

Silver (II) oxide has been made by the hydrolytic action of boiling water on a substance of the approximate formula Ag7O8NO3, a material which obtained by the electrolytic oxidation of silver (I) nitrate solutions (Ref. 1-4). A more rapid and convenient process for the preparation of this oxide involves the oxidation of silver (I) nitrate by means of potassium peroxydisulfate ("Oxone") in an alkaline medium (Ref. 5, 6).

Procedure

72 grams of sodium hydroxide (NaOH, 1.8 mols) in pellet form is added portionwise, with constant stirring, to 1 liter of water, which is maintained at approximately 85°. Seventy-five (75) grams of potassium peroxydisulfate (0.28 mols) in the form of an aqueous slurry is added to the hot alkaline solution; this is followed by the addition of 51 gr of silver (I) nitrate (0.30 mol) dissolved in a minimum amount of water. The temperature of the resulting mixture is raised to 90°, and stirring is continued for approximately 15 minutes.

The precipitate of black silver (II) oxide is filtered on a large Buchner funnel, and sulfate ion is removed by washing with water which has been made slightly alkaline with sodium hydroxide. The product is air-dried.

Yield, 35 gr (94%).

Analysis: Calculated for AgO: Ag, 87.08%. Found: Ag, 86.93%, 86.90% (by gravimetric chloride method, after dissolution of the product in 3N nitric acid).

Properties

There are many indications that AgO is a true oxide, rather than a peroxide, and is, therefore, properly named silver (II) oxide. The compound does not give free hydrogen peroxide when acidified but behaves in a manner more characteristic of a compound in which the metal ion is present in a strongly oxidized valence state, which may be stabilized by coordination. In dilute acid, oxygen is immediately evolved; in concentrated acid, intensely colored solutions are formed (brown in nitric acid and olive green in sulfuric acid). These latter solutions are relatively stable, though they gradually decompose with an accompanying liberation of oxygen, and have been show to possess paramagnetism which is quantitatively consistent with the expected magnetic moment of the postulated silver (II) species (Ref. 7). In the solid state, this oxide is stable when heated to 100°, but it decomposes at higher temperatures. The solid possesses semiconductor properties and is diamagnetic. These phenomena have been explained by Neiding and Kazarnovskii (Ref. 7) on the assumption that the silver is actually trivalent in its crystal lattice with both O-Ag and Ag-Ag bonds. The difference in the specific volumes of AgO and Ag2O is less than would be expected if AgO were a peroxide (Ref 7). Equilibrium of silver (II) oxide with dilute nitric acid gives the black paramagnetic oxynitrate (Ag7O8NO3), a substance in which part of the silver is apparently in the tripositive state.

References

1. Mulder: Rec. Trav. Chim. 17: 129 (1898)
2. Watson: J. Chem. Soc. 89: 578 (1906)
3. Jirsa: Zeit. Anorg. u. Allgem. Chem. 148: 130 (1925)
4. Noyes, et al.: J. Amer. Chem. Soc. 59: 1326 (1937)
5. Barbieri: Chem. Berichte 60: 2427 (1927)
6. British Patent # 579,817; Chem. Abstr. 41: 1401h (1947)
7. Chem. Abstr. 45: 8385h (1951)



Source : http://81.207.88.128/science/chem/exps/Ni+persulfate/index.html

PREPARATION OF TETRASILVER TETROXIDE

Oxidation of silver to its +3 oxidation state.

Prepare a solution of silver nitrate or silver oxide in dilute nitric acid. Any concentration of 1 to 2 mol/l for the nitric acid is OK.

Add some solid sodium persulfate to the liquid. Adding a fairly concentrated solution of sodium persulfate also works. When this is done, then the liquid becomes brown and remains clear. The brown color is due to silver (III) ions. The brown color is formed quickly, although not instantaneously. It takes a few seconds.

Silver (III) ions are not very stable. Even in the fairly strongly acidic liquids, the compound slowly decomposes. A black precipitate is formed and oxygen is released very slowly. This black precipitate is due to combined hydrolysis and reduction of the silver (III) ions. A mixed silver (I) silver (III) oxide is formed, which precipitates from the liquid as a black solid.

Remarkably, when persulfate is added to a neutral solution of silver nitrate, then no brown color is formed. In that case the liquid first remains colorless, but in the course of a few minutes it slowly turns turbid and a dark brown/black precipitate is formed. Apparently, at higher pH, the brown silver (III) ion is not formed at all and the mixed silver (I) silver (III) oxide is formed immediately.

Addition of sodium hydroxide, quick formation of Ag(I)Ag(III)O2

When the brown liquid is added to a solution of sodium hydroxide, then the process of formation of the black silver (I) silver (III) oxide is almost immediate. As soon as the brown liquid is added to a solution of sodium hydroxide, a dark brown very finely divided precipitate is formed. The solid particles stick together quickly and larger black particles are formed. The black solid slowly evolves oxygen and every few minutes it moves to the surface, due to many small bubbles of oxygen, which are trapped inside the precipitate. When these small bubbles of oxygen are lost, then the solid mass sinks to the bottom again. This 'dance' is repeated several times.

The three pictures below show the liquid, immediately after adding it to a slight excess amount of a solution of NaOH. The second picture shows the same liquid a few minutes later, when the particles of the precipitate stick to each other. The final picture shows the precipitate near the surface, due to lots of trapped bubbles of oxygen. All the pictures clearly show the bubbles of oxygen.

Whether the brown color is due to plain Ag3+ or due to some mixed valency complex of silver (I) and silver (III) is not clear to me. It might be that the brown color is due to a mixed valency complex of silver (I) and silver (III). Examples of mixed valency complexes are also given on the following pages: copper (I) / copper (II) and titanium (III) / titanium (IV).

Reaction with silver

In acidic media, persulfate is capable of oxidizing silver (I) ions to silver (III) ions. These silver (III) ions are brown.

Ag+(aq) + S2O82-(aq) ? Ag3+(aq) + 2SO42-(aq)

Silver (III) ions are not very stable. This liquid slowly looses its color and gives off oxygen. A black precipitate is formed of silver (I) silver (III) oxide. The silver (III) ions slowly oxidize the water, in which they are dissolved.

4Ag3+ + 6H2O ? 2AgIAgIIIO2 + 12H+ + O2

When the liquid is made more basic, then the reaction proceeds much faster, as the experiment demonstrates. The following reaction occurs in that case.

4Ag3+ + 12OH– ? 2AgIAgIIIO2 + 6H2O + O2

The compound AgAgO2 in turn also decomposes. It slowly looses oxygen and is converted to simple silver (I) oxide.

2AgIAgIIIO2 ? 2AgI2O + O2

General remarks

Both the silver (III) compounds and the NiO2 compound are very strong oxidizers. Both compounds are capable of oxidizing manganese (IV) and manganese (II) to the +7 oxidation state as permanganate and chromium (III) is oxidized to the +6 oxidation state as dichromate or chromate.

Silver nitrate is a catalyst in many reactions with persulfate in acidic media. Persulfate is a strong oxidizer, but it also is somewhat sluggish. The reaction between silver (I) and persulfate in acidic media, however is quite fast. Silver (III) in turn reacts with manganese (II) or chromium (III) quickly to form permanganate or dichromate, itself being converted to silver (I) again. So, in the presence of a small amount of silver nitrate, the persulfate anion can be used as a fast and very strong oxidizer. The catalytic action of silver is based on the fact that an other pathway for the final redox reaction is provided, with Ag3+ as intermediate species.

A similar catalytic action can be observed with nickel hydroxide in basic solutions. The reaction between nickel hydroxide and persulfate is very fast (instantaneously, at least in terms of human observation). Nickel (IV) oxide in turn is capable of oxidizing e.g. manganese (IV) oxide to permanganate. This property can be used as a sensitive method for detecting manganese.

Another important remark is that in both experiments, the presence of chloride ions should be avoided. Especially with the silver experiment, chloride ions are really disturbing. They make the liquid cloudy, due to formation of silver (I) chloride and they interfere, due to oxidation to chlorine.

For the nickel experiment the presence of chloride is not of a direct concern, but if one wants to use NiO2 for detection of manganese by conversion to the deep purple permanganate, then even small amounts of chloride interfere and make the detection fail.

More info on the interesting and remarkable subject of silver (III) chemistry can be found in the following book: Chemistry of the Elements, second edition, written by Greenwood and Earnshaw, pages 1181 and 1188.



US Patent Application 20080233161
Deposition Products, &c...


Stojan Djocik


[0131] ... Following addition of the persulfate (preferably potassium persulfate) to the deposition solution of 1% AgNO.sub.3 within the time of about 1 minute to about 10 minutes, and depending on the concentration of the persulfate as well as on the conditions of agitation, the formation first of a yellow brown color of the solution and then a black grayish precipitate will occur. This brown color of the solution is attributed to the oxidation of Ag(I) to Ag(II).

[0132] The black grayish deposit at the article or in the bulk solution is a consequence of the formation of silver oxy-salts such as Ag.sub.7O.sub.8X, were X is an anion, depending on the acid used in the method e.g. HNO.sub.3 (NO.sub.3--), H.sub.2SO.sub.4 (SO.sub.4 2), etc. The decomposition of the silver oxy-salts may be presented as:

Ag(Ag.sub.3O.sub.4).sub.2X=AgX+AgO (1)

[0133] Persulfates are powerful oxidizing agents. They can therefore be reduced in aqueous solutions according to the following reactions:

S.sub.2O.sub.8.sup.2-+2e.sup.-=2SO.sub.4.sup.2-, with E.degree.=1.96 V (2)

S.sub.2O.sub.8.sup.2-+2H.sup.++2e.sup.-=2HSO.sub.4.sup.-, with E.degree.=1.96 V (3)

and

S.sub.2O.sub.8.sup.2-+2H.sub.2O=2H.sup.++2SO.sub.4.sup.2-+H.sub.2O.sub.2, with .DELTA.G.degree.=-36 kJ/mol (4)

[0134] A consequence of the reduction of persulfate is the oxidation of Ag(I) to Ag(II) and Ag(III), probably according to the following reactions:

Ag.sup.+=Ag.sup.2++e.sup.-, with E.degree.=1.98 V (5)

Ag.sup.++H.sub.2O=AgO.sup.++2H.sup.++e.sup.-, with E.degree.=1.998 V (6)

Ag.sup.2++H.sub.2O=AgO.sup.++2H.sup.++e.sup.-, with E.degree.=2.06 V (7)

Ag.sup.++H.sub.2O=AgO+2H.sup.++e.sup.-, with E.degree.=1.772 V (8)



ANTELMAN, Marvin : Precious Metals
16 : 141-149 ( 1992 ) ; "Anti-Pathogenic Silver Molecular Semiconductors"

"Tetrasilver tetroxide (Ag4O4 ) crystals were prepared by modifying the procedure described by Hammer and Kleinberg in Inorganic Syntheses (IV,12). A stock solution was prepared by dissolving 24.0 grams of potassium peroxydisulfate in distilled water and subsequently adding to this 24.0 of sodium hydroxide and then diluting the entire solution with said water to a final volume of 500 ml. Into 20 ml. vials were weighed aliquots of silver nitrate containing 1.0 g. of silver. Now 50 ml. of the aforementioned stock solution were heated in a 100 ml. beaker, and the contents of one of the vials was added to the solution upon attaining a temperature of 85.degree. C. The beaker was then maintained at 90.degree. C. for 15 minutes. The resulting deep black oxide obtained consisting of molecular crystal devices was washed and decanted four times with distilled water in order to remove impurities. The purified material was collected for further evaluation and comparison with commercial material. The commercial material was purchased from Johnson Matthey's Catalog Chemicals Division of the Aesar Group of Ward Hill, Massachusetts, under product code 11607 and generically listed in its materials Safety Data Sheet as both silver peroxide and silver suboxide, having a purity of 99.9%... "



Tetrasilver Tetroxide is prepared with and activated by Oxone ( K-peroxydisulfate ). It also is activated by Hydrogen Peroxide.

Potassium Peroxydisulfate

( Oxone )


http://en.wikipedia.org/wiki/Potassium_peroxymonosulfate

Potassium peroxymonosulfate (also known as MPS, potassium monopersulfate, and the trade names Caroat and Oxone) is widely used as an oxidizing agent. It is the potassium salt of peroxymonosulfuric acid.

The potassium salt is marketed by two companies: Evonik (formerly Degussa) under the tradename Caroat and DuPont under the tradename Oxone, tradenames which are now part of standard chemistry vocabulary. It is a component of a triple salt with the formula 2KHSO5·KHSO4·K2SO4.[1] The standard electrode potential for this compound is +1.44 V with a half reaction generating the hydrogen sulfate.

        HSO5- + 2 H+ + 2 e- ? HSO4- + H2O

Reactions

Oxone is a versatile oxidant. It oxidizes aldehydes to carboxylic acids; in the presence of alcoholic solvents, the esters may be obtained. Internal alkenes may be cleaved to two carboxylic acids, while terminal alkenes may be epoxidized. Thioethers give sulfones, tertiary amines give amine oxides, and phosphines give phosphine oxides.[2]

Illustrative of the oxidation power of this salt is the conversion of an acridine derivative to the corresponding acridine-N-oxide.[3]

It will also oxidize a thioether to a sulfone with 2 equivalents.[4] With one equivalent the reaction converting sulfide to sulfoxide is much faster than that of sulfoxide to sulfone, so the reaction can conveniently be stopped at that stage if so desired.

Uses

Potassium peroxymonosulfate can be used in swimming pools to keep the water clear, thus allowing chlorine in pools to work to sanitize the water rather than clarify the water, resulting in less chlorine needed to keep pools clean.[5]

References

1. "Oxone". Spectral Database for Organic Compounds (SDBS). "National Institute of Advanced Industrial Science and Technology (AIST)". http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_frame_disp.cgi?sdbsno=21455.

2. Benjamin R. Travis, Meenakshi Sivakumar, G. Olatunji Hollist, and Babak Borhan (2003). "Facile Oxidation of Aldehydes to Acids and Esters with Oxone". Organic Letters 5 (7): 1031–4. doi:10.1021/ol0340078. PMID 12659566.

3. Thomas W. Bell, Young-Moon Cho, Albert Firestone, Karin Healy, Jia Liu, Richard Ludwig, and Scott D. Rothenberger (1993), "9-n-Butyl-1,2,3,4,5,6,7,8-Octahydroacridin-4-ol", Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv8p0087 ; Coll. Vol. 8: 87

4. James R. McCarthy, Donald P. Matthews, and John P. Paolini (1998), "Reaction of Sulfoxides with Diethylaminosulfur Trifluoride", Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv9p0446 ; Coll. Vol. 9: 446

5. "Benefits of Using a Non-Chlorine Shock Oxidizer Powered by DuPont™ Oxone®." Dupont.com. Accessed July 2011.

Applications

DuPont Oxone Monopersulfate Compound Applications : http://www.dupont.com/oxone/applications/index.html

Potassium Monopersulfate – Article on precious metal extraction from distributor Green Controll : http://greencontroll.hu/EN_termekek_7.html

Technical

DuPont Oxone Monopersulfate Compound Technical Information
http://www.dupont.com/oxone/techinfo/index.html



Oxone is available @ Amazon.com :

http://www.amazon.com/Robelle-PoolBasics-Oxidizing-Shock-Swim/dp/B004RRHTT2/ref=sr_1_4?s=garden&ie=UTF8&qid=1317780206&sr=1-4





http://www.chemblink.com/products/37222-66-5.htm

Potassium Peroxomonosulfate



Name -- Potassium peroxomonosulfate
Synonyms -- Oxone; Potassium monopersulfate; Potassium monopersulfate triple salt
Molecular Structure -- Potassium peroxomonosulfate, Oxone, Potassium monopersulfate, Potassium monopersulfate triple salt, CAS # -- 37222-66-5
Molecular Formula -- H3K5O18S4
Molecular Weight -- 614.76
CAS Registry Number -- 37222-66-5
Water solubility -- 250 g/L (20 ºC)
Risk Codes -- R34;R37;R8    Details
Safety Description -- S17;S26;S36/37/39;S45    Details



TetraCopper Tetroxide ( TCTO )

According to Antelman, Tetracopper Tetroxide is only slightly less powerful than Tetrasilver Tetroxide :

"Monovalent silver is more anti-pathogenic than mercury which is more anti-pathogenic than copper, based on their oligodynamic activity as articulated by J.G. Horsfal in "Principles of Fungicidal Action" ( Chronica Botanica 1956 ).

US 5336416
Trivalent Copper Water Treatment Compositions

BACKGROUND OF THE INVENTION

The present invention relates to the employment of trivalent copper, i.e., Cu(III) compounds, as bactericidal and algicidal agents in water treatment. The instant inventor has been involved over the past years in searching out new compounds which are anti pathogenic and which can be utilized for water treatment. The inventor's efforts have concentrated upon multivalent silver compounds. To date seven patents have been granted to the inventor in this area as follows: U.S. Pat. Nos. 5,017,295; 5,073,382; 5,078,902; 5,089,275; 5,098,582; 5,211,855; and 5,223,149. The last patent deals with the efficacy of trivalent silver in water treatment and is entitled TRIVALENT SILVER WATER TREATMENT COMPOSITIONS. Said invention deals with trivalent silver compounds which are very effective as bactericides, bacteriostats, algistats and algicides. Having completed his research in this area, it occurred to the inventor that it may be possible that trivalent copper compounds could also exhibit this behavior. However, such a conclusion was not obvious.

The reason that such a conclusion was not obvious was that it would be entirely possible that Cu(III) compounds could not necessarily be expected to exhibit all or some of the behavior of Ag(III) compounds of an anti-pathogenic nature.

Accordingly, it was decided to investigate the possibility. The reason why such an investigation was undertaken was that if it were ascertained that there was anti-pathogenic efficacy with Cu(III) compounds, then it could be entirely possible that said compounds would offer an economic advantage on a cost effective basis if proven out, since copper is far less expensive than silver. The scientific literature was subsequently scrutinized in order to find suitable trivalent copper candidates for synthesis and subsequent tests and evaluations. Accordingly, trivalent Cu(III) compounds were selected from the literature for further study and subsequent synthesis. The inventor also synthesized other Cu(III) compounds not found in the literature of his own creation. After having accomplished the synthesis of several of these trivalent Cu compounds, those meeting certain criteria, e.g. highest yields were submitted for testing and evaluation as potential bactericides, bacteriostats, algicides and algistats. However, it was not enough that these compounds kill and inhibit the growth of both bacteria and algae, but it is also necessary that said compounds perform the function within a specific time frame as demanded by US Federal standards in conformity with protocols of the Environmental Protection Agency as engendered and defined by the Code of Federal Regulations (CFR) for utilitarian bodies of water of which swimming pools is exemplary.

The evaluations of the Cu(III) compositions proved highly successful. Furthermore, while it is known that divalent copper compounds exhibit useful algicidal and algistatic properties, no copper (II) compound is known to be active as a bacteriostat or bactericide at copper concentrations below 10 PPM, let alone to exhibit said characteristics at any concentration in conformity with the aforementioned specifications defined in the CFR. Accordingly, this invention perfected copper (III) compounds for all these functions and offered the previously outlined economic advantages over the inventor's Ag(III) compounds.

OBJECTS OF THE INVENTION

The main object of this invention is to provide compositions embodying trivalent copper compounds capable of killing and/or inhibiting the growth of bacteria and algae, particularly in utilitarian bodies of water, that is, bodies of water having a particular use, such as swimming pools, hot tubs, drinking-water reservoirs, recreational lakes and industrial cooling towers.

Another object of the invention is to provide a source of trivalent copper ions capable of meeting regular CFR and EPA standards for swimming pools and hot tubs, mainly, a bactericide capable of achieving 100% kills within 10 minutes.

Still another object of the invention is to provide a trivalent copper composition having the aforesaid function but which can be formulated into a marketable concentrated liquid product for utilization in utilitarian bodies of water.

Other objects, features, functions and characteristics of the present invention will become apparent to those skilled in the art when the present invention is considered in view of the accompanying examples. It should, of course, be recognized that the accompanying examples illustrate preferred embodiments of the present invention and are not intended as a means of defining the limits and scope of the present invention.

SUMMARY OF THE INVENTION

This invention relates to the utilization of trivalent copper compounds for bactericidal and algicidal applications in utilitarian bodies of water, such as swimming pools, hot tubs, municipal and industrial water supplies, as for example, cooling towers.

More specifically, this invention concerns stable Cu(III) complexes. Said complexes are designated via the principal quantum number (n), being equal to 3 and the second quantum number (1) being equal to 2. The letter "l" delineates sublevel d electrons. According to the accepted conventional designation, trivalent copper complexes are called d@8 complexes; while divalent and monovalent copper are designated d@9 and d@10 complexes, respectively.

Trivalent copper complexes were prepared by various routes of synthesis. However, irrespective of the manner of preparation, all the methods chosen utilized copper sulfate as the starting material source of copper (II) ions and sodium or potassium persulfate as the oxidizing agent for changing Cu(II) complexes to Cu(III)...



USP Appln 20080233161
DEPOSITION PRODUCTS, COMPOSITE MATERIALS AND PROCESSES FOR THE PRODUCTION THEREOF


The investigation of the bacteriostatic properties of pure metals such as Fe, Mo, Cu, V, Sn, W, Au, Al, Ta, Nb, Ti, Zr, Ni, Co, Ag and Cr, has proved that Co was the only element which was inhibitory for the bacterial growth under anaerobic conditions (K. J. Bundy, M. F. Butler and R. F. Hochman, "An Investigation of the Bacteriostatic Properties of Pure Metals", Journal of Biomedical Materials Research, Vol. 14 (1980) 653-663). Under aerobic conditions both Cu and Co consistently display inhibitory effects. Some antimicrobial effects have been seen for Ni, Fe and V. However, other metals such as Mo, W, Al, Nb, Zr, Cr and most importantly for the present invention Ag and Sn never showed any tendency to inhibit the growth of Streptococcus mutans..."




DISCLAIMER


TETRASILVER TETROXIDE IS SOLD FOR WATER PURIFICATION & LABORATORY USE ONLY, NOT FOR HUMAN CONSUMPTION.

ALL AVAILABLE INFORMATION IS INCORPORATED IN THE DATA SHEET & PATENTS ABOVE.

If you need more information you will have to discover it yourself...



***   DATA  SHEET   ***    PATENTS   ***   PREPARATION   ***

***    OXONE  
***   TETRACOPPER TETROXIDE   ***

*** Buy TSTO ***



tetrasilver1.com